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Three-periodic semiregular nets are de®ned as those with just one kind of vertex

and one kind of edge, but excluding the ®ve regular and one quasiregular nets

described earlier. Fourteen of these and their natural tilings are described and

their importance in crystal chemistry is indicated.

1. Introduction

There is considerable interest in enumerating and character-

izing the basic topologies that underlie crystal structures. In

particular, it is desirable to assign some measure of `regularity'

to nets as it is the most regular that are the prime targets for

synthesis of pre-designed structures (O'Keeffe et al., 2000;

Yaghi et al., 2003). In the ®rst paper of this series (Delgado

Friedrichs et al. 2003a), we described ®ve regular and one

quasiregular three-periodic nets. The regular nets were those

with one kind of vertex (vertex transitive) for which, in the

maximum symmetry embedding in Euclidean space, the

coordination ®gure is a regular polygon or polyhedron and the

symmetry at the vertex site contains at least the rotational

symmetries of that polygon or polyhedron. For the quasi-

regular net, the coordination ®gure is a quasiregular poly-

hedron (cuboctahedron).

In the same paper, we also introduced the concept of a

natural tiling, which was de®ned to consist of the smallest

possible tiles that preserve the symmetry, and in which all the

faces of the tiles are strong rings. Strong rings are in turn

de®ned as those that are not the ring sum of smaller rings

(Goetzke & Klein, 1991). The faces of the tiles are the essential

rings of the structure. We were not aware at the time that our

natural tiles are essentially the same as the interstitial domain

de®ned by Schoen (1970).

A structure with p kinds of vertex, q kinds of edge, r kinds

of essential ring and s kinds of tile is said to have transitivity

pqrs (Delgado Friedrichs & Huson, 2000). The regular

3-periodic nets have transitivity 1111 referred to their natural

tilings and the quasiregular net likewise has transitivity 1112.

We conjecture that there are no other structures with these

transitivities when referred to the natural tiling. In this

connection, we remark that, if any tiling at all can be found for

a given net,1 different tilings can be obtained, e.g. by

combining and/or dividing tiles to make new ones, but for the

nets we have examined it appears that the natural tiling is

unique. We gave an example of a non-natural tiling with

transitivity 1111 for the quasiregular net in the earlier paper,

and give another below (x2.7).

The transitivity pqrs is an array of four numbers; however,

from the point of view of a crystal designer, it is fruitful to

consider this array as a single number and to suppose that the

smaller this number the more regular the structure. Thus, in

order with the most regular ®rst, we have 1111 (regular), 1112

(quasiregular), 1121 (next) and so on. In this paper, we

describe structures with transitivity 11rs (i.e. vertex and edge

transitive) which we call semiregular. The regular, quasi-

regular and semiregular nets correspond to the symmetric

3-periodic graphs of Schoen (1970).

We require that all structures can be realized in an

embedding in which each vertex is in the center of the coor-

dination ®gure de®ned by the neighbors to which it is

connected, and further that no two vertices are coincident in

this embedding (we need this last condition to exclude certain

pathological structures, cf. x7.1). Note that an N-coordinated

structure might not be an N-coordinated sphere packing, as a

given vertex may have vertices as close or closer to it than the

vertices to which it is linked by edges. We limit our discussion

of semiregular nets to those structures in which, in their

maximum-symmetry embeddings, there are no intervertex

distances less than the edge length. This last restriction is

necessary to restrict the topic to a ®nite set of structures most

likely to be of interest in crystal chemistry.

Every tiling has a dual obtained by placing a vertex in the

center of each of the original tiles and connecting pairs of new

vertices through the faces common to pairs of tiles to form

new edges. The vertices of the faces of the dual tiling corre-

spond to the centers of the original tiles meeting at an original

edge, and each dual tile encloses one vertex of the original

tiling.

The dual of the dual of a tiling must be the original tiling. As

the vertices, edges, faces and tiles map onto the tiles, faces,

edges and vertices of the dual, a tiling with transitivity pqrs has

a dual with transitivity srqp. All the dual tilings of the struc-

1 There are nets in which some rings are catenated (linked) and hence cannot
serve as faces of tiles and, as a consequence, a tiling may not exist. An example
of such a net is the one identi®ed as 123 (O'Keeffe et al., 2000). In the Si net of
the coesite form of SiO2 (O'Keeffe & Hyde, 1996), the 8-rings are likewise
catenated.
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tures described here have transitivity sr11, and hence consist

of one kind of tile with one kind of face. Schoen (1970) calls

the dual tile the symmetry domain of the vertex of the original

net as it has of necessity the point symmetry of that vertex.

If the tiling and its dual are both natural tilings of nets, the

essential rings of each net are penetrated by edges of the other

and we say the nets are fully catenated. We have called these

`dual nets' [Delgado Friedrichs et al. (2003a,b), cf. `dual

graphs' (Schoen, 1970)] but, as the tiling of a net is not unique,

the term is imprecise; we propose instead to refer to the nets of

a pair of dual natural tilings as `natural duals'. However, it may

be (and sometimes is, we give examples below) the case that

the dual tiling is not a natural tiling. In this case, the nets of the

pair are not fully catenated and at least one of the pair has no

natural dual. To avoid these dif®culties, we refer to the net of

the dual of a natural tiling as `optimally interpenetrating' the

®rst.

We identify 14 examples of structures with transitivity 11rs

and r � 2. Accordingly, together with the regular and

quasiregular structures, we have a total of 20 edge-and-vertex-

transitive 3-periodic structures. We believe that, with the

restrictions noted above, the list is fairly complete, but we do

not claim completeness.

Some structures correspond to invariant lattice complexes

and we give the symbols previously assigned to them (Fischer

& Koch, 1983). Most correspond to homogeneous sphere

packings (Fischer, 1971, 1973, 1974, 1993; Koch & Fischer,

1995; Sowa et al., 2003) and in Tables 1, 2 and 3 these are

identi®ed by the Fischer symbol z/r/sn, where z is the coor-

dination number, r is the size of the smallest ring in the

structure, s is a symbol denoting the crystal system (c = cubic,

h = hexagonal and t = tetragonal) and n is a serial number for

given z, r and s.

As in the earlier paper (Delgado Friedrichs et al., 2003a), we

assign a three-letter code to each structure, as some structures

have a multitude of names and others have none that are

known to us. This name refers to the underlying topology of

the net, not only to the maximum-symmetry embedding that is

described here. Tiles are characterized by a face symbol

[Mm.Nn . . . ], which signi®es that there are m faces that are

M-rings, n that are N-rings etc. Names and some data for the 20

nets are listed in Table 1.

The semiregular nets fall into three groups with transitiv-

ities 1121, 1122 and 1132, respectively, and we consider them

in that order. They are generally illustrated in augmented form

(O'Keeffe et al., 2000), in which a polygon or polyhedron

corresponding to the coordination ®gure replaces the original

vertex. This is the form in which the nets often appear in e.g.

metal±organic frameworks (MOFs) in which we are particu-

larly interested (Yaghi et al., 2003) ± the polygons or polyhedra

representing the secondary building units (SBUs) of the

framework.

2. Structures with transitivity 1121

2.1. Lattice complex vT, symbol lvt

Although not very well known in crystal chemistry, this

tetragonal structure with c/a = 1 and square coordination (Fig.

1) is of some interest and should be better known. It has been

found as a partially catenated interpenetrating pair in a

hydrogen-bonded framework (Hawkins et al., 1993, cf. Batten

Table 1
Regular (1±5), quasiregular (6) and semiregular (7±20) nets.

l.c. = lattice complex, Fischer = Fischer symbol (see text), p.s. = point symmetry, s.g. = space group, trans. = transitivity, dual is the face symbol of the dual tiling
(* denotes this is not a natural tiling). The origin is always taken at an inversion center when one is present [`origin choice 2' of International Tables for
Crystallography (1983)].

No. Z Vertex ®gure l.c. Name Fischer p.s. s.g. c/a x, y, z Tiles Trans Dual

1 3 Triangle Y* srs 3/10/c1 32 I4132 1/8, 1/8, 1/8 [103] 1111 [103]
2 4 Square J* nbo 4/6/c2 4/mmm Im�3m 0, 1/2, 1/2 [68] 1111 [44]
3 4 Tetrahedron D dia 4/6/c1 �43m Fd�3m 1/8, 1/8, 1/8 [64] 1111 [64]
4 6 Octahedron cP pcu 6/4/c1 m�3m Pm�3m 0, 0, 0 [46] 1111 [46]
5 8 Cube cI bcu 8/4/c1 m�3m Im�3m 0, 0, 0 [44] 1111 [68]

6 12 Cuboctahedron cF fcu 12/3/c1 m�3m Fm�3m 0, 0, 0 [38]+2[34] 1112 [412]

7 4 Rectangle vT lvt 4/4/t1 2/m I41/amd 1.0 0, 0, 0 [42. 84] 1121 [54]*
8 4 Tetrahedron W* sod 4/4/c1 �42m Im�3m 1/4, 0, 1/2 [46. 68] 1121 [34]
9 4 Tetrahedron S* lcs 4/6/c3 �4 Ia�3d 3/8, 0, 1/4 [62. 63] 1121 [54]

10 4 Tetrahedron V lcv 4/3/c1 222 I4132 1/8, 0, 1/4 [32. 103] 1121 [64]
11 4 Tetrahedron Q qtz 4/6/h1 222 P6222 3/(2 � 21/2) 1/2, 0, 0 [62. 82] 1121 [74]
12 6 Hexagon ± hxg ± �3m Pn�3m 0, 0, 0 [46. 64] 1121 [46]
13 6 Metaprism Y lcy 6/3/c1 32 P4132 3/8, 3/8, 3/8 [3. 53] 1121 [66]*
14 6 Octahedron T crs 6/3/c2 �3m Fd�3m 0, 0, 0 [34]+[34. 64] 1122 [46]
15 6 Octahedron ± bcs ± �3 Ia�3d 0, 0, 0 [63]+[42. 62] 1122 [86]
16 6 Trigonal prism E acs 6/4/h2 �6m2 P63/mmc 31/2/2 1/3, 2/3, 1/4 2[43]+[43. 62] 1122 [66]*
17 8 Tetragonal prism J reo 8/3/c2 4/mmm Pm�3m 1/2, 0, 0 [38]+[38. 46] 1122 [38]
18 8 Bisdisphenoid S thp 8/3/c1 �4 I�43d 3/8, 0, 1/4 [43]+[32. 43] 1122 [58]
19 4 Rectangle ± rhr 4/4/c3 mm2 Im�3m 0.3333, x, 0 3[44. 82]+[68. 86] 1132 [44]
20 4 Tetrahedron ± ana 4/4/c5 2 Ia�3d 1/8, 0.3333, 1/4-y 3[42. 82]+2[62. 83] 1132 [54]



& Robson, 1998) and also in a CuII-bipyridine metal±organic

framework (Carlucci et al., 2002). If the symmetry is lowered

to I�42d, the structure can serve as the T net of a TX2 frame-

work of corner-connected regular TX4 tetrahedra with

T±X±T � 115�, and it occurs in this way in a supertetrahedral

sul®de framework (Wang et al., 2001). The vertex symbol

(O'Keeffe & Hyde, 1996, 1997) of the net is 4�4�84�84�88�88.

If c=a is increased from 1.0 to 21/2, each vertex has six

nearest neighbors arranged as in the T lattice complex (crs)

described in x3.1 below. The relationship to this structure

(q.v.), and hence to the self-dual diamond structure (dia),

explains the propensity for intergrowth. Two intergrown nets

optimally avoiding collisions are displaced from each other by

0, 0, 1/2.

The natural tiles are cages [42.84] (Fig. 1).The dual structure

with transitivity 1211 is carried by a tiling [54] (Fig. 1) and is

the 6-coordinated �-Sn structure (O'Keeffe & Hyde, 1996).

However, the dual tiling is not a natural tiling as the tile has a

smaller ring (a 4-ring) around the perimeter, and the natural

tiling for the �-Sn structure is [4.52] so the transitivity for the

natural tiling of that net is 1221 and its dual structure is a

3-coordinated net corresponding to sphere packing 3/8/t1 of

Koch & Fischer (1995).2

2.2. Sodalite, lattice complex W*, symbol sod

The four-coordinated sodalite net (zeolite code SOD:

Baerlocher et al., 2001) is very well known in crystal chemistry

and elsewhere and we brie¯y recapitulate some of its more

important properties. The net is carried by a tiling by trun-

cated octahedra (Fig. 2). It is an example of a simple tiling,

which is one in which the tiles are simple polyhedra (i.e.

polyhedra in which three edges meet at every vertex) and in

which two tiles meet at each face, three at each edge and four

at each vertex; as such it acts as an ideal model for the

structure of monodisperse cellular materials such as foams

(Weaire & Hutzler, 1999) and the universe (Hamilton et al.,

1986).

The sod net can be derived from the regular net nbo by

placing vertices in the middle of the edges of that net,

discarding the original vertices and joining the new vertices to

the nearest neighbors by new edges to form what we have

called an edge net (Delgado Friedrichs et al., 2003b). We show

(Fig. 2) the augmented sod net; if the edge lengths of this

structure are all equal, the vertices are at the positions of what

is believed to be the least-dense stable homogeneous sphere

packing (O'Keeffe, 1991; Aste & Weaire, 2000).

The dual structure with transitivity 1211 is 14-coordinated

and is carried by an isohedral tiling by tetrahedra, which is the

only vertex-transitive such tiling (Delgado Friedrichs &

Huson, 1999). It corresponds to the net obtained by linking

each vertex of the body-centered cubic lattice to its nearest

and next-nearest geometrical neighbors. Clearly, this cannot

be realized in a form in which all 14 edges have equal length

(this would correspond to a tiling by regular tetrahedra, which

is readily shown to be impossible). It might be noted that 24 of

the dual tetrahedra combine to form a rhombic dodecahedron

(Fig. 2); the centers of these tetrahedra are, of course, the

vertices of a truncated octahedron.

2.3. Lattice complex S*, symbol lcs

This is another 4-coordinated net, of lesser importance in

crystal chemistry. Although all the faces of the natural tiles are

hexagons (Fig. 3), they are of two topological types and we

write the symbol for the tile as [62.63]. A (not-natural!) tiling

by in®nite tiles can be constructed by fusing rods of tiles that
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Figure 2
Left: a fragment of the augmented sod net. Center: the sod net as a tiling
of truncated octahedra. Right: 24 dual [34] tiles forming a rhombic
dodecahedron.

Figure 1
From the left: the augmented lvt net, the outline of one [42.84] tile (red)
with a fragment of the dual structure (blue), a packing of the tiles (yellow)
and, right, one dual tile [54]. Note that the dual tile has a 4-ring around the
middle and hence is not a natural tile.

Figure 3
Left: the augmented lcs net. The view is almost down [111] and the
centers of the yellow balls are on this direction. Center: the lcs net as a
tiling by pentahedra [62.63]. Right: a dual [54] tile.

2 It might be noted that O'Keeffe & Sullivan (1998) considered the structure
derived by a tiling of Voronoi domains of the �-Sn structure. This is a simple
tiling by polyhedra with 18 faces and corresponds to a point of view in which
the �-Sn structure is 18-coordinated (cf. the sodalite structure discussed below,
which is the dual of a body-centered cubic considered as 14-coordinated) and
has transitivity 1442. Thus, we see that, for a given array of points of space,
there is always some arbitrariness about what we call edges, faces (rings) and
tiles. However, once we have decided on the edges, we believe that the natural
tiling is unique (provided that it exists) and thus a single transitivity referred to
that tiling.
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run along h111i. This structure now has transitivity 1111

(Delgado Friedrichs et al., 2002). The dual tiling is by cages [54]

(Fig. 3). See also Hyde et al. (2003).

2.4. Lattice complex V, symbol lcv

The lcv net is another 4-coordinated net, again of lesser

importance in crystal chemistry. It is the edge net of the

regular net srs. The tiles are cages [32.103] illustrated in Fig. 4.

The augmented structure is particularly open with channels

running along h111i and h100i. The dual tile is [64].

2.5. Quartz net, lattice complex Q, symbol qtz

This 4-coordinated net is familiar as the net of the Si atoms

in the quartz form of SiO2 (the ±O± links in quartz correspond

to the edges of the net). The tile (Fig. 5) is a tetrahedron with

two hexagonal and two octagonal faces. The 4-coordinated

dual net (`quartz dual', symbol qzd) cannot be realized as a

4-coordinated sphere packing, but is nevertheless of consid-

erable interest in crystal chemistry, as is the quartz net itself.

We have discussed some properties of these nets and their

intergrowths elsewhere (Delgado Friedrichs et al., 2003b).

2.6. Net hxg and polybenzene

The 6-coordinated hxg net is the only structure with tran-

sitivity 1121 that we have identi®ed in which the edges are not

the shortest distances between vertices that correspond to an

invariant lattice complex. The arrangement of vertices in the

most symmetrical embedding is in fact the same as the points

of the face-centered cubic lattice. However, only one half of

the edges of that structure are retained so that the topological

neighbors of a vertex form a regular hexagon. The symmetry is

Pn�3m with vertices in 4(b) (0, 0, 0 etc.); the midpoints of the

edges are in 12( f) (1=2; 1=4; 3=4 etc).

In Fig. 6, we show the augmented net. This latter structure

has been called polybenzene to re¯ect its calculated stability

and electronic properties as a form of elemental carbon

(O'Keeffe et al., 1992); it is also known as `cubic graphite'

(Shen et al., 2003).

The natural tile (Fig. 6) has ten faces: [46.64] (so the dual

structure is 10-coordinated) and is the `tetrahedral decahe-

dron' of Pearce (1978). The vertices of the tetragonal faces are

at the corners of a regular tetrahedron and the vertices of the

hexagonal faces are at the corners of a regular octahedron.

Schoen (1970) remarks that, if the hxg net is constructed using

straight edges, it can be embedded in both the P and the D

minimal surfaces. Indeed, if the tiles are assembled sharing

only the tetragonal faces, the hexagonal faces form the P

minimal surface; if they are assembled sharing only the

hexagonal faces, the tetragonal faces form the D minimal

surface as shown in Fig. 7.

2.7. Lattice complex Y, symbol lcy

This 6-coordinated net, although also of lesser importance

in crystal chemistry, illustrates some important points about

dual nets and interpenetration. The coordination ®gure is a

triangular metaprism [intermediate between a prism and an

antiprism (O'Keeffe & Hyde, 1996)]. The tile (Fig. 8) is a

tetrahedron with one triangular and three pentagonal faces,

[3.53]; accordingly, the dual net is four-coordinated and is in

fact the diamond (dia) net (coordinates 0, 0, 0 etc. or

Figure 6
Left: the augmented hxg net (`polybenzene'). The yellow spheres are in
the centers of cavities with tetrahedral symmetry and form a body-
centered cubic array. Right: The natural tile ([46.64], yellow) and two dual
tiles (blue).

Figure 5
Left: the augmented qtz net. Center: the natural tiling of the qtz net.
Right: the dual tiling.

Figure 4
Left and center: the lcv net viewed down [100] and [111], respectively. On
the right, a group of natural tiles are shown in yellow, and one dual [64]
tile is shown in blue.

Figure 7
Groups of fused hxg tiles forming a fragment of the P surface (left) and
the D surface (right).



1=2; 1=2; 1=2 etc. in P4132 correspond to vertices of diamond

nets). However, to recover the lcy net as the dual of dia we

must use a non-natural tiling of the latter in which pairs of

tetrahedral normal tiles (adamantane units) are fused together

to form a hexahedral tile (see Fig. 8).

On the other hand, if we start with a non-natural tiling [56]

for lcy in which pairs of natural tiles are fused at a common

triangular face, the net of the dual structure is again lcy so

pairs of lcy nets can interpenetrate with all pentagonal rings

catenated, and in fact these are the labyrinth graphs of the Y

minimal balance surface (Fischer & Koch, 1989). The tiling

(not natural!) ignoring the 3-rings has transitivity 1111.

We do not know of an extended structure with a net based

on lcy but the above discussion suggests that it would be an

interesting challenge to attempt the design and synthesis of

one.

3. Structures with transitivity 1122

3.1. Lattice complex T, symbol crs

This structure is of course very familiar in crystal chemistry.

The positions of the vertices are the middles of the edges in

the regular 4-coordinated dia net. In the cristobalite form of

silica, the Si atoms are on a dia net and the links of the net are

±O±. Accordingly, in the idealized form of cristobalite with

symmetry Fd�3m, the O atoms are in the positions of lattice

complex T, hence the symbol crs. There are now two kinds of

tile: tetrahedra and truncated tetrahedra (Fig. 9). The reci-

procal tiles are oblate rhombohedra with � = cosÿ1(1=3) (the

same shape as the primitive unit cell of the body-centered

cubic lattice); four of them ®t together to form a rhombic

dodecahedron (Fig. 9, cf. Fig. 3).

The augmented structure corresponds to a linkage of

octahedra by equal links. The vertices form a 5-coordinated

net; for all equal edge lengths the coordinates are

1=28; 23=28; 23=28 etc.

The vertices of two crs nets (A and B say) displaced by

1=2; 1=2; 1=2 combine to form a face-centered cubic lattice

(fcu). The links A±B alone form an hxg net (x2.6, see also x5).

3.2. A six-coordinated structure bcs

In this structure, there are eight neighbors equidistant to

each vertex but edges to only six of them. A way to generate

the structure is as follows. Start with a body-centered cubic

lattice and connect each vertex to its eight neighbors. This will

generate a set of lines with four meeting at each lattice point.

Now embed this pattern in a doubled cell with symmetry Ia�3d

and delete the lines along the (non-intersecting) threefold

rotation axes of that group. Each point will have three lines

intersecting in the pattern shown in Fig. 10. The middles of the

edges have coordinates 1/8, y, 1/4 ÿ y etc., with y = 3=8. The

site symmetry at each vertex is �3 and the coordination is a

¯attened octahedron with vertices at six of the eight corners of

a cube. There are two kinds of tile that are very concave and

thus rather hard to visualize (Fig. 10).

3.3. Lattice complex E as 6-coordinated. Structure acs

This is a hexagonal structure so the ratio of cell edges c=a is

a free parameter. If c=a = (8=3)1/2 = 1.63 . . . , the arrangement

of vertices is as in hexagonal closest packing. If c=a > (8=3)1/2,

each vertex has six neighbors in a plane and the structure is a

sequence of parallel 36 nets. If 2=3 < c=a < (8=3)1/2, each vertex

has six nearest-neighbor vertices at the corner of a trigonal

prism and has maximum volume for a given edge length when

c=a = (2=3)1/2 = 0.816 . . . . This six-coordinated structure we

refer to as acs.

The structure (`squashed' hexagonal closest packing) has 36

layers packed in an AB . . . sequence. The primitive cubic

structure (pcu) has the same layers packed with the same

spacing but in the sequence ABC . . . . Just as there is an in®-

nite family of closest packings (Barlow packings), there is an

in®nite family of `squashed' 6-coordinated structures. The next

member, with sequence ABAC . . . (hc), is the NiAs structure,

which we will discuss in the next paper in this series. Notice
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Figure 10
Left: a stick model of the bcs net. Center: the natural tiling of [63] and
[42.62] (yellow). Right: the dual tile [86].

Figure 9
Left: a fragment of the augmented crs net. Middle: the crs net as a tiling
by regular truncated tetrahedra ([34.66], yellow) and tetrahedra ([34],
magenta). Right: three of the dual rhombohedral ([46]) tiles forming a
rhombic dodecahedron.

Figure 8
Left: a fragment of the augmented lcy net. Next on the right is the outline
of one tile (red) with an element of the dual structure (blue). Next is a
group of ®ve natural tiles ([3.53], yellow). Right: a group of dual tiles [66]
each consisting of a pair of natural dia tiles (adamantane units).
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that, if c=a = 2=3, the structure is 8-coordinated with two kinds

of edge and, for c=a < 2=3, there are just two nearest neigh-

bors.

The augmented acs structure (Fig. 11) represents the only

way of linking trigonal prism units with symmetry �6m2 with

equal linkers.

The natural tiling involves two tiles with three and ®ve

vertices as shown in the ®gure. Accordingly, the dual structure

has two kinds of vertex, one 3- and one 5-coordinated. This

structure is the hexagonal graphite structure with the spacing

between the 63 graphite layers equal to the nearest-neighbor

distance in the layers, so half the vertices become 5-coordi-

nated. The [66] dual tiles have 6-rings around the perimeter so

they are not the natural tiles of the hexagonal graphite

structure.

We digress brie¯y to describe two related structures with

similar tilings. The natural tiling of the hexagonal graphite

structure is instead tetrahedra [6.63] and the dual of this

structure is the lonsdaleite structure (so, pleasingly, the

graphite and lonsdaleite structures are natural duals of each

other). The lonsdaleite structure is also a tiling by trihedra

([63]) and pentahedra ([62.63]), as shown in Fig. 12. We also

show in Fig. 12 another (3, 5)-coordinated structure that is a

tiling by topologically equivalent trihedra and pentahedra.

This structure is naturally self dual, and in fact the net

corresponds to the labyrinth graph of the H minimal surface

(Schoen, 1970).

3.4. The ReO3 structure net, symbol reo

The reo structure (Fig. 13) is familiar as the net of a tiling by

regular octahedra and cuboctahedra and corresponds to the O

positions in crystalline ReO3. The augmented net consists of

linked cubes and this second net is the same as that of the

zeolite LTA (Baerlocher et al., 2001). The dual tiles are octa-

hedra; six of these combine to form a rhombic dodecahedron

(Fig. 13, cf. Figs. 2 and 9).

3.5. The thp net

The thp net corresponds to the Th array in the Th3P4

structure and also occurs in a number of related crystal

structures. It is often described as 12-coordinated by counting

nearest- and next-nearest-neighbor distances as edges. In this

description (O'Keeffe & Andersson, 1977; O'Keeffe & Hyde,

1996), it is generated by a tiling of twisted octahedra (trigonal

metaprisms) and tetrahedra (Fig. 14), and has transitivity 1232.

Here we prefer to count just the nearest-neighbor links as

edges, so the structure is 8-coordinated and the transitivity is

1122. The coordination ®gure is a bisdisphenoid and the

Figure 15
Left: the augmented rhr net. Right top: the normal tiles of the rhr net
([68.86], yellow and [44.82], magenta). Below is one dual tile (44], blue)

Figure 11
Left: the augmented acs net shown as linked trigonal prisms. Center: the
natural tiling by trihedra ([43], magenta) and pentahedra ([43.62], yellow).
Right: the dual tiling by hexahedra [66]. Note that the dual tiles have a
hexagon around the perimeter so they are not natural tiles.

Figure 13
Left: the augmented reo structure shown as linked cubes. Center: the reo
structure shown as a tiling by regular octahedra and cuboctahedra. Right:
The dual octahedral tiles shown combining to form a rhombic
dodecahedron.

Figure 12
Left: a self-dual tiling by [63] (magenta) and [62.63] (yellow) tiles. Middle:
the lonsdaleite structure as a tiling by [63] and [62.63] tiles. Right: the dual
of the lonsdaleite structure. The net dual structure is the same as that of
the dual of the acs net (Fig. 11) but now the tiles are [6.63].

Figure 14
Left: the augmented thp net shown as linked bisdisphenoids. Center: the
12-coordinated structure as a tiling by tetrahedra and octahedra (see
text). Right: the natural tiles for the thp net ([32.43], yellow and [43],
magenta) and a dual tile ([58], blue).



augmented net shown as linked bisdisphenoid in the ®gure,

which also shows the tiles and dual tiles.

It might be noted that in this structure the edges are polar

so in the augmented net the vertices at each end of a link are

different (they are respectively 5- and 6-coordinated).

4. Structures with transitivity 1132

4.1. The rhr net

The rhr net has square-planar coordination and is shown in

Fig. 15 in its augmented form as linked squares. The natural

tiles are [44.82] and [68.86]; if they are joined by sharing only

the octagonal [tetragonal] faces, the remaining faces combine

to produce the P [C(P)] minimal surface (Fig. 15). The dual

tile [44] has the same topology as the natural tile for body-

centered cubic (bcu).

4.2. The ana net

The ana net is the net of the tetrahedral atoms in the zeolite

analcime (zeolite framework code ANA, Baerlocher et al.,

2001). The vertices have the lowest possible symmetry (2) for

an edge-transitive net and although analcime-related mate-

rials are common zeolites, the net does not appear to have

arisen elsewhere in crystal chemistry. A TX2 structure with the

ANA topology made from corner-linked regular TX4 tetra-

hedra has a T±X±T angle of 147.7�, which makes it particularly

favorable for aluminosilicates. The edges necessarily are polar

as they have symmetry 1. Aspects of the net are illustrated in

Fig. 16.

5. Edge nets and augmented nets

An edge net is obtained by placing new vertices in the middle

of edges of a parent net and discarding the old vertices. The

new vertices are then joined by edges to echo the coordination

®gures of the old vertices (e.g. a square or tetrahedron for

originally square or tetrahedral coordination) ± note that in

general it is not the same as an edge graph of graph theory in

which vertices in edges common to a given original vertex are

joined to form a complete graph. As all the semiregular nets

are edge transitive, the edge nets are vertex transitive. We list

these derived nets in Table 2. Notice that two distinct nets may

have the same edge net. Thus, sod is the edge net of both nbo

and hxg. The edge net of lvt is the net of the zeolite GIS, which

we symbolize gis and that of rhr is the net of zeolite RHO,

symbol rho (cf. Hyde et al., 2003). The edge net of crs is the

8-coordinated packing pyc named for the pyrochlore structure

(O'Keeffe & Hyde, 1996). Notice that the coordinates are for

homogeneous sphere packings (i.e. all edges equal) when

possible, so the vertices in the derived net are not necessarily

in the geometric center of the original edge.

For convenience, we also give the coordinates of the

vertices of the augmented nets in Table 3.

6. Derived two-colored nets

Some of the nets we have described are bipartite ± i.e. they can

serve as structures AB in which A is connected only to B and

vice versa. This is of interest as one may want to link different

SBUs with the same shape and symmetry; a simple example is

afforded by the structure of berlinite AlPO4 in which AlO4

tetrahedra alternate with PO4 tetrahedra to form a super-

structure of the quartz form of SiO2. The groups may be of
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Table 2
The edge nets of regular (1±5), quasiregular (6) and semiregular nets (7±20).

Fischer = Fischer symbol (see text), c.n. = coordination number, s.g. = space group, p.g. = point group. The origin is always taken at an inversion center when one is
present [`origin choice 2' of International Tables for Crystallography (1983)].

No. Net Edge net c.n. Fischer s.g. p.g. a c x y z

1 srs lcv 4 4/3/c1 I4132 222 3.2660 1/8 0 1/4
2 nbo sod 4 4/4/c1 Im�3m �4m2 2.8284 1/4 0 1/2
3 dia crs 6 6/3/c2 Fd�3m �3m 2.8284 0 0 0
4 pcu reo 8 8/3/c2 Pm�3m 4/mmm 1.4142 1/2 0 0
5 bcu pcu (�8) 6 6/4/c1 Pm�3m² m�3m 1.0 0 0 0
6 fcu reo (�8) 8 8/3/c2 Pm�3m² 4/mmm 1.4142 1/2 0 0
7 lvt gis 4 4/4/t3 I41/amd 2 3.3337 2.9815 0.6500 1/4+x 7/8
8 sod sod-e 6 6/3/c6 Im�3m mm2 3.4142 0 0.3536 y
9 lcs lcs-e 6 6/3/c7 Ia�3d 2 3.8637 1/8 0.2835 1/4ÿy

10 lcv lcv-e³ 6 ± I4132 2 3.9681 1/8 0.2341 1/4ÿy
11 qtz qtz-e 6 6/3/h3 P6222 1 1.9319 2.1213 0.7887 2x 1/2
12 hxg sod 4 4/4/c1 Im�3m² �4m2 2.8284 1/4 0 1/2
13 lcy lcy-e 6 6/3/c17 P4132 2 2.3800 1/8 0.2035 1/4+y
14 crs pyc 8 8/3/c2 Fd�3m m 3.7712 0.9375 1/8 1/8
15 bcs bcs-e§ 8 ± Ia�3d 2 3.0938 1/8 0.4268 1/4±y
16 acs kag (�2) 6 6/3/h13 P6/mmm² mmm 2.0 1.0 1/2 0 0
17 reo reo-e 6 6/3/c3 Pm�3m mm2 2.4142 0 0.2929 y
18 thp thp-e³ 9 ± I�43d 1 3.3779 0.0791 0.1420 0.6164
19 rhr rho 4 4/4/c4 Im�3m 2 4.8284 1/4 0.1035 1/2+y
20 ana ana-e 6 6/3/c36 Ia�3d 1 5.1615 0.2216 0.3917 0.8681

² True symmetry (and coordinates) of edge net. ³ lcv-e and thp-e have unequal edges. § bcs-e has distances shorter than edges.
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different size and stoichiometry: in the MnGe4S10 framework,

tetrahedral MnS4 groups and tetrahedral Ge4S10 groups are

linked to form a network of the diamond (dia) topology

(Yaghi et al., 1994). The maximum symmetry is lowered to

F�43m and the AB structure is that of the sphalerite form of

ZnS. Other familiar binary structures derived from regular

nets are those of NbO, NaCl and CsCl.

In order to have a binary derived structure with one kind of

edge, the edges of the original structure must be non-polar and

all rings must be even. Thirteen of the twenty vertex-and-

edge-transitive structures meet these criteria. Data for the

derived structures are listed in Table 4. In every case but that

of the binary bcs net, the shortest A� � �B distances uniquely

de®ne the edges. For the binary bcs net, the centers of the

edges remain in positions 1=8; 3=8; 7=8 etc. The pattern of

points of A or B alone is often that of one of the structures we

have described. For example, in the binary srs net each set of

points is that of lcy (see Table 2).

7. Linked polygons and polyhedra

A major motivation for this work is the desire to enumerate

ways in which geometric ®gures (polygons and polyhedra)

corresponding to clusters of atoms can be linked by one kind

of linker to form extended crystal structures (Yaghi et al.,

2003). The points of extension of the clusters correspond to

the vertices of these ®gures which are often referred to as

secondary building units (SBUs). The augmented forms of the

nets we have described provide examples.

Unfortunately, the augmented forms of the nets do not

provide a complete enumeration. For example, the augmented

tetrahedral structures could be modi®ed by systematically

Table 3
Coordinates for augmented regular (1±5), quasiregular (6) and semiregular nets with non-polar bonds (7±17, 19).

c.n. = coordination number, Fischer = Fischer symbol (see text), s.g. = space group, p.g. = point group, unit-cell parameters for unit edge. The origin is always taken
at an inversion center when one is present [`origin choice 2' of International Tables for Crystallography (1983)].

No. Net Aug. net c.n. Fischer s.g p.g. a c x y z

1 srs srs-a 3 3/3/c1 I4132 2 6.0948 1/8 0.0580 1/4ÿy
2 nbo nbo-a 3 3/4/c1 Im�3m mm2 4.8284 0.1464 0 1/2
3 dia dia-a 4 4/3/c6 Fd�3m 3m 5.1374 0.0562 x x
4 pcu cab 5 5/3/c3 Pm�3m 4mm 2.4142 0.2929 0 0
5 bcu pcb 4 4/4/c2 Im�3m 3m 3.1457 0.1585 x x
6 fcu ubt 5 5/3/c4 Fm�3m mm2 4.2426 1/2 0.3333 y
7 lvt lvt-a 3 3/4/t3 I41/amd 1 5.6334 5.3139 0.0887 0.0609 0.9315
8 sod sod-a 4 4/3/c10 Im�3m m 6.2426 0 0.3066 0.4199
9 lcs lcs-a 4 4/3/c32 Ia�3d 1 7.1678 0.0647 0.2238 0.4243

10 lcv lcv-a 4 4/3/c27 I4132 1 6.8284 0.1768 0.1768 0.0000
11 qtz qtz-a 4 ± P6222 1 3.5718 3.8390 0.4582 0.1144 0.0921
12 hxg pbz 3 3/6/c2 Pn�3m 2 4.2426 1/2 0.3333 ÿy
13 lcy lcy-a 4 4/3/c17 P4132 1 4.0358 0.0325 0.4675 0.8341
14 crs crs-a 5 5/3/c10 Fd�3m m 6.6001 0.3214 x 0.0357
15 bcs bcs-a 5 5/3/c43 Ia�3d 1 5.4297 0.0935 0.0797 0.9569
16 acs acs-a 4 ± P63/mmc m 3.4545 3.0865 0.4298 2x 0.0880
17 reo lta 4 4/4/c6 Pm�3m 2 3.8284 0 0.1847 0.3694
19 rhr rhr-a 3 3/4/c9 Im�3m 1 8.2930 0.3701 0.2848 0.0603

Table 4
Two-colored derivatives of the regular and semiregular nets.

s.g. refers to space group, under cell the entry `same' means that the conventional cell is unchanged, 2a means that the cell edges are all doubled and 2c means that
just the c axis is doubled in the binary derivative. The origin is always taken at a center of symmetry when there is one [`origin choice 2' of International Tables for
Crystallography (1983)]. Array refers to the pattern of points in one of the sets of points in the binary structure (see text). lcw refers to the 2-coordinated invariant
lattice complex W (Fischer & Koch, 1983).

No. Name Unary s.g. Binary s.g. Cell x, y, z x, y, z Array

1 srs I4132 P4332 Same 1/8, 1/8, 1/8 5/8, 5/8, 5/8 13 lcy
2 nbo Im�3m Pm�3m Same 0, 1/2, 1/2 1/2, 0, 0 17 reo
3 dia Fd�3m F�43m Same 0, 0, 0 1/4, 1/4, 1/4 6 fcu
4 pcu Pm�3m Fm�3m 2a 0, 0, 0 1/2, 0, 0 6 fcu
5 bcu Im�3m Pm�3m Same 0, 0, 0 1/2, 1/2, 1/2 4 pcu
7 lvt I41/amd Imma Same 0, 0, 0 1/4, 1/4, 1/4
8 sod Im�3m Pm�3n Same 1/4, 0, 1/2 1/4, 1/2, 0 lcw
9 lcs Ia�3d I�43d Same 3/8, 0, 1/4 7/8, 0, 1/4 18 thp

11 qtz P6222 P6422 2c 1/2, 0, 0 1/2, 0, 1/2
12 hxg Pn�3m Fd�3m 2a 0, 0, 0 1/2, 1/2, 1/2 14 crs
15 bcs Ia�3d Ia�3 Same 0, 0, 0 1/4, 1/4, 1/4 4 pcu
16 acs P63/mmc P�6m2 Same 1/3, 2/3, 0 2/3, 1/3, 1/2
19 rhr Im�3m Pm�3m Same 0.3333, x, 0 0.8333, x, 1/2



removing pairs of opposite edges of the tetrahedra to leave a

pattern of linked quadrilaterals (which, in some instances at

least, may be squares). Similarly, prisms and antiprisms may be

interconverted by adding or removing edges as appropriate

and many polyhedra with N vertices may be converted into

N-gons. Nets that are ampli®ed by replacing each vertex by a

cluster of vertices are referred to as decorated (O'Keeffe et al.,

2000). Any such net of equal ®gures connected by equal links

would correspond to a decoration of one of the nets enum-

erated above if our enumeration is complete. We consider

some special cases below.

7.1. Linked squares

In Fig. 17, we show a net of linked squares derived form the

augmented diamond net. This net was discussed at length by

Wells (1977) and has recently been found in a metal±organic

framework (MOF) (Carlucci et al., 2001). In the augmented

qtz (quartz) and lcv structures, the tetrahedra have symmetry

222 (D2) and three different structures with the same

symmetry as the parent structure are derived according to

which pairs of opposite edges of the tetrahedra are removed.

Such nets are 3-coordinated, so they and others might be

expected to be found in the list of vertex-transitive 3-coordi-

nated sphere packings of Koch & Fischer (1995) in which there

is a single 4-ring at each vertex. There are 16 such structures;

15 of these are either augmented (a) or otherwise decorated

(d) versions of the nets in this paper. We list these 16 struc-

tures here:

3/4/c1 (a-nbo); 3/4/c2 (d-sod); 3/4/c3 (see below); 3/4/c4

(d-sod); 3/4/c5 (d-lcv); 3/4/c6 (d-lcv); 3/4/c7 (d-lcv); 3/4/c8

(d-sod); 3/4/c9 (a-rhr); 3/4/c10 (d-lcs); 3/4/t1 (d-dia); 3/4/t2

(d-dia); 3/4/t3 (a-lcv); 3/4/h1 (d-qtz); 3/4/h2 (d-qtz); 3/4/h3

(d-qtz).

The case of 3/4/c3 is instructive. The underlying net (dec-

orated in 3/4/c3) is shown in Fig. 18. The symmetry is I432 and

vertices are in 12(e), x, 0, 0 etc. with x 6� 0 or 1=2 (actually the

symmetry of just the vertices is Im�3m). The vertices have one

or two (for x = 1=4) nearest neighbors but in fact edges link

four of eight equidistant further neighbors to make the

4-coordinated net shown. The centers of the edges are in 24(i),

1=4, y, 1=2 ÿ y with y = x=2. It should be clear from the ®gure

that if the vertices are at the center of mass of their neighbors

they will come together in pairs (x = 0) so we excluded such a

net from consideration at the outset. The ®gure also shows the

augmented net (sphere packing 3/4/c3) as a linkage of squares.

The only 4-coordinated net in our list that does not appear

decorated in the Koch±Fischer list of vertex-transitive

3-coordinated sphere packings is ana. This is because the

bonds in ana are polar and as a consequence the augmented

net has two kinds of vertex.

7.2. Linked hexagons, octahedra and trigonal prisms

Fig. 17 shows a net formed by linking planar hexagons with

a decorated pcu (primitive cubic) topology. This net was

discussed by Wells (1977) who remarked on its occurrence in

the hydrogen-bonded structure of �-quinol clathrates (Palin &

Powell, 1947).

The Koch & Fischer (1995) compilation of 3-coordinated

sphere packings contains nine structures containing 6-rings. In

the ®rst of these (3/6/c1), the 6-rings share edges, but in the

rest they are linked by single edges so they are decorations of

our 6-coordinated edge-transitive structure. The identi®cation,

made in the same way as in x7.1, is:

3/6/c2 (a-hxg); 3/6/c3 (d-crs); 3/6/c4 (d-pcu); 3/6/c5 (d-pcu);

3/6/c6 (d-bcs); 3/6/h1 (d±pcu); 3/6/h2 (d-acs); 3/6/h3 (d-acs).

The net of Fig. 17 is that of 3/6/h1. The cubic minimal

surfaces of genus 3, the D, P and G surfaces can be tiled with

hexagons and octagons in such a way that two octagons and

one hexagon meet at each vertex. These structures, labeled

6.82 D, 6.82 P and 6.82 G (O'Keeffe & Hyde, 1996) are those of

3/6/c2, 3/6/c4 and 3/6/c6, respectively. 6.82 D is the polybenzene

structure of x2.6.
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Figure 16
Left: the ana net as a stick model. Center: natural tiles ([42.82], magenta
and [62.83], yellow) for the ana net. Right: a dual tile ([54]).

Figure 18
Left: a vertex and edge-transitive 4-coordinated net with symmetry I432.
Right: the augmented net shown as linked squares. This is the net of the
sphere packing 3/4/c3 of Koch & Fischer (1995).

Figure 17
Two nets described by Wells (1977). Left: linked squares with a decorated
dia topology. Right: linked hexagons with a decorated pcu topology.
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The augmented acs net is a linkage of trigonal prisms with

symmetry P63=mmc. The trigonal prisms can be converted to

trigonal antiprisms (octahedra) linked by equal links in two

ways with symmetry P�31c and symmetry P6322. These corre-

spond to the sphere packings 3/6/h2 and 3/6/h3 with hexagon

angles equal to 60�. Parameters a, c, x, y, z for all edges equal

to unity are: P�31c: 2.9134, 2.5308, 0.1352, 0.6667, 0.9113; P6322:

3.1715, 2.7453, 0.1513, 0.4846, 0.3987.

7.3. Linked cubes, square antiprisms and octagons

MOFs based on nets with coordination numbers �8 are

rare, indeed we know of only one 8-coordinated case (Long et

al., 2001), and in this case the structure is based on linked

single atoms so the SBU is just a single vertex; the net is that of

bcu. Accordingly, we do not expect structures built from SBUs

with eight vertices to be very common and our analysis is

rather cursory.

The Koch±Fischer list of sphere packings includes three

(3/8/t2, 3/8/t3 and 3/8/t4) with 8±rings that do not have

common edges. As expected, they are all decorated bcu nets

and may be considered as derived from augmented bcu

(`polycubane') by removing four edges per cube. The net of

the packing 3/8/t1 can also be considered as derived from

octagons each linked to eight other octagons.

One can also derive two linkings of square antiprisms from

augmented bcu by adding four edges per cube. Two ways that

have all links between the polyhedra the same are obtained

from 3/8/t2 (symmetry I422) and 3/8/t3 (symmetry P4=nnc) by

making the octagon angles equal to 60�. Parameters a, c, x, y, z

for all edges equal to unity are: I422: 2.9869, 2.8687, 0.0906,

0.2188, 0.1466; P4=nnc: 2.7934, 2.7015, 0.0161, 0.1532, 0.5944

(origin at �1).

8. Concluding remarks

It is simple to enumerate all vertex-and-edge-transitive

structures with periodicity less than three. In tilings of the

sphere (0-periodic), there are the ®ve regular (platonic)

polyhedra (33, 34, 35, 43, 53) and the two quasiregular

polyhedra ± the cuboctahedron (3.4.3.4) and the icosi-

dodecahedron (3.5.3.5). For 1-periodic structures (tilings of

a cylinder), there is only the in®nite family of 44 tiles

(Koch & Fischer, 1978; Eddaoudi et al., 2002). For tilings of

the plane (2±periodic), there are three regular tilings (36, 44,

63) and one quasiregular tiling (3.6.3.6). Advantage has been

taken of these results to show that there are just nine basic

ways of linking square SBUs by one kind of linker into

structures of different dimensionality, and the successful

synthesis of many of them has been demonstrated (Eddaoudi

et al., 2002).

The next step is to enumerate and describe structures with

two kinds of vertex and one kind of edge, i.e. the remaining

edge-transitive nets. This will be the subject of the next paper

in this series.
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